A) Select the correct answer

1) Only one of the following series diverges

$\sum \frac{(-1)^{n}}{n}$	$\sum \frac{4}{n^{\sqrt{8}}}$	$\sum \frac{4 n}{n^{6}+1}$	$\sum \frac{4}{n^{1.4}}$	$\sum \frac{4}{\sqrt[5]{n}}$
Conv. By	Conv. P-series			
Alternate test	Conv.	Comparison test Conv. P-series $b_{n}=\frac{4 n}{n^{6}}=\frac{4}{n^{5}}$	Diverge	

2) $\sum_{0}^{\infty} \frac{9}{4^{n}}=9+\frac{9}{4}+\frac{9}{16}+\frac{9}{64}+\cdots=\frac{a}{1-r}=\frac{9}{1-\frac{1}{4}}=12$

Geometric series with $a=9, r=\frac{1}{4}$

5	10	12	6

3) The sequence $\left\{\frac{4^{n}}{9^{n+1}}\right\}_{n=1}^{\infty}$ $\lim _{n \rightarrow \infty} \frac{4^{n}}{9^{n+1}}=\lim _{n \rightarrow \infty} \frac{4^{n}}{9^{n * 9}}=\lim _{n \rightarrow \infty}\left(\frac{4}{9}\right)^{n} * \frac{1}{9}=0 \quad$ since $\quad \lim _{n \rightarrow \infty} a^{n}=\left\{\begin{array}{cc}0 & 0<a<1 \\ \infty & a>1\end{array}\right.$
a) Diverge
b) converge to 5
c) converge to 0
d) converge to 1
4) The sequence $\left\{\frac{7^{n}}{3^{n+1}}\right\}^{\infty}$
$\lim _{n \rightarrow \infty} \frac{7^{n}}{3^{n+1}}=\lim _{n \rightarrow \infty} \frac{7^{n}}{3^{n} * 3}=\lim _{n \rightarrow \infty}\left(\frac{7}{3}\right)^{n} * \frac{1}{3}=\infty$
a) Converge to 0
b) converge to 2
c) Diverge
d) converge to 3

B) Test the convergence of the following

1) $\sum_{0}^{\infty} \frac{5^{n} n^{2}}{(n)!}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\mathbf{5}^{n+1}(\boldsymbol{n}+\mathbf{1})^{2}}{(\boldsymbol{n}+\mathbf{1})!} * \frac{(\boldsymbol{n})!}{\mathbf{5}^{n} \boldsymbol{n}^{2}}=$
$\lim _{n \rightarrow \infty} \frac{\mathbf{5}^{\boldsymbol{n}} * \mathbf{5}(\boldsymbol{n}+\mathbf{1})^{\mathbf{2}}}{(\boldsymbol{n}+\mathbf{1})(\boldsymbol{n})!} * \frac{(\boldsymbol{n})!}{\mathbf{5}^{\boldsymbol{n}} \boldsymbol{n}^{2}}=\lim _{n \rightarrow \infty} \frac{\mathbf{5}(\boldsymbol{n}+\mathbf{1})}{\boldsymbol{n}^{2}}=\lim _{n \rightarrow \infty} \frac{5 n}{\boldsymbol{n}^{\mathbf{2}}}=\lim _{n \rightarrow \infty} \frac{5}{\boldsymbol{n}}=0 \quad<1$
Abs. Converge by Ratio test
2) $\sum_{1}^{\infty} \frac{(2 n+3)^{n}}{n^{n}}$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n+3)^{n}}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{2 n+3}{n}=2 \quad>1
$$

Diverge by root test

3) $\sum_{1}^{\infty} \frac{(4 n+2)^{n}}{n^{3 n}}$
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(\mathbf{4 n}+2)^{n}}{\boldsymbol{n}^{3 n}}}=\lim _{n \rightarrow \infty} \frac{4 n+2}{n^{3}}=0 \quad<1$
Abs. Converge by Root tset
